Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Fl_chart | 5,906 | 7 | 16 | 6 days ago | 87 | June 10, 2023 | 245 | mit | Dart | |
FL Chart is a highly customizable Flutter chart library that supports Line Chart, Bar Chart, Pie Chart, Scatter Chart, and Radar Chart. | ||||||||||
Ogb | 1,721 | 22 | 2 months ago | 19 | November 02, 2022 | 19 | mit | Python | ||
Benchmark datasets, data loaders, and evaluators for graph machine learning | ||||||||||
Cogdl | 1,437 | 1 | 5 months ago | 17 | June 01, 2022 | 34 | mit | Python | ||
CogDL: A Comprehensive Library for Graph Deep Learning (WWW 2023) | ||||||||||
Graph2vec | 791 | a year ago | 1 | gpl-3.0 | Python | |||||
A parallel implementation of "graph2vec: Learning Distributed Representations of Graphs" (MLGWorkshop 2017). | ||||||||||
Stgcn_ijcai 18 | 723 | 7 months ago | 9 | bsd-2-clause | Python | |||||
[IJCAI'18] Spatio-Temporal Graph Convolutional Networks | ||||||||||
Knowledge Graph Learning | 662 | 8 months ago | 336 | mit | ||||||
A curated list of awesome knowledge graph tutorials, projects and communities. | ||||||||||
Sr Gnn | 607 | 2 years ago | 6 | Python | ||||||
[AAAI 2019] Source code and datasets for "Session-based Recommendation with Graph Neural Networks" | ||||||||||
Conve | 574 | a year ago | 22 | mit | Python | |||||
Convolutional 2D Knowledge Graph Embeddings resources | ||||||||||
Knowledge_graph_attention_network | 434 | 3 years ago | 24 | mit | Python | |||||
KGAT: Knowledge Graph Attention Network for Recommendation, KDD2019 | ||||||||||
Cleora | 434 | 5 months ago | 12 | other | Jupyter Notebook | |||||
Cleora AI is a general-purpose model for efficient, scalable learning of stable and inductive entity embeddings for heterogeneous relational data. |
This repository contains the source code of the SIGIR 2019 paper "Reinforcement Knowledge Graph Reasoning for Explainable Recommendation" [2].
Two Amazon datasets (Amazon_Beauty, Amazon_Cellphones) are available in the "data/" directory and the split is consistent with [1]. All four datasets used in this paper can be downloaded here.
python preprocess.py --dataset <dataset_name>
"<dataset_name>" should be one of "cd", "beauty", "cloth", "cell" (refer to utils.py).
python train_transe_model.py --dataset <dataset_name>
python train_agent.py --dataset <dataset_name>
python test_agent.py --dataset <dataset_name> --run_path True --run_eval True
If "run_path" is True, the program will generate paths for recommendation according to the trained policy. If "run_eval" is True, the program will evaluate the recommendation performance based on the resulting paths.
[1] Yongfeng Zhang, Qingyao Ai, Xu Chen, W. Bruce Croft. "Joint Representation Learning for Top-N Recommendation with Heterogeneous Information Sources". In Proceedings of CIKM. 2017.
[2] Yikun Xian, Zuohui Fu, S. Muthukrishnan, Gerard de Melo, Yongfeng Zhang. "Reinforcement Knowledge Graph Reasoning for Explainable Recommendation." In Proceedings of SIGIR. 2019.