队伍名:卡文尼尔
第一赛季排名:191/4058
第二赛季排名:168/4058
成绩:0.0824
这次比赛是抱着学习做特征工程的心态来做的,所以整体思路是模型加少许规则。
一路做下来发现对于时间序列的预测,最有效果的特征还是它的历史数据。model1将星期与假期哑变量作为特征,前三周为训练集,分别对每个商家用Lasso来预测,成绩可以到0.0847。但若是对每个商家分别建模,样本量太少,容易过拟合。因此改用整体建模的方式。
对缺失值进行填充。将客流量数据以星期为列,重排为数据框,将有零的行去掉后取后三周的平均作为填充值。也就是说填充值是一个字典{周一均值,周二均值,...}。这样对预测一些近期没营业数据,在预测区间内却正常营业的商家时,有很好的效果。
对浏览数据进行同样处理。
取前三周作为训练集,预测一周,剩下的一周与前一周一致。理论上把预测的第一周也作为训练集重新预测第二周,是使残差平方和最小的估计。但实际情况却比不上复制。因此取两周预测相同。
主要提取四方面特征:
Extremely Randomized Trees 极端随机树。它与随机森林的不同之处在于,随机森林选择最佳分割点时,以香农熵或gini系数为依据;极端随机树是随机选择分割点。这使得森林里每棵树的差异比随机森林更大,集成时方差更小。GBDT和RF在该数据集上表现不如ET。因此选择ET作为模型。
有部分商家近三周的销售数据突降,却又不为零,与前段时间相差甚远(如23号,727号,810号...)。因为训练集取的是前三周,这使得预测不能反映出更前的历史状态,需要进行修改。
因为官方说预测区间内商家正常营业,因此我尝试用更前的“正常”数据对预测进行填充修改。23号商家因为最近的几天出现明显的回升,因此这样的修改还是很有把握的,而727号商家近期无明显回升趋势,因此修改后成绩有所下降。
这说明在没有明显回升趋势的情况下,该规则不适用。
现在还是一名新手,之前未用过Hadoop。这次用MapReduce来对数据进行聚合,速度真的好快啊,内存控制得也很好,以后一定好好学Hadoop。MR的代码也放上去了,其实就是一个简单的WordCount,欢迎指出不足的地方。若能获得大家指点一二,是我之幸事! (MapReduce对user_pay.txt(2.1G)单机聚合时间约3分钟,使用内存控制在1G以内)