Awesome Open Source
Awesome Open Source

Semantic Relevance Based Text Summarization Model

Code for "Improving Semantic Relevance for Sequence-to-Sequence Learning of Chinese Social Media Text Summarization" The codes are also used for "A Semantic Relevance Based Neural Network for Text Summarization and Text Simplification"

Requirements

  • Tensorflow r1.0.1
  • Python 3.5
  • CUDA 8.0 (For GPU)
  • ROUGE

Data

The dataset in the paper is Large Scale Chinese Short Text Summarization (LCSTS). To preprocess the data, please split the sentences into characters, and transform the characters into numbers (ids).

Run

python3 MleTrain.py

Cite

If you use this code for your research, please cite the paper this code is based on: Improving Semantic Relevance for Sequence-to-Sequence Learning of Chinese Social Media Text Summarization:

@inproceedings{MaEA2017,
	author    = {Shuming Ma and Xu Sun and Jingjing Xu and Houfeng Wang and Wenjie Li and Qi Su},
	title     = {Improving Semantic Relevance for Sequence-to-Sequence Learning of Chinese Social Media Text Summarization},
	booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational
	Linguistics, {ACL} 2017, Vancouver, Canada, July 30 - August 4, Volume
	2: Short Papers},
	pages     = {635--640},
	year      = {2017}
}

Get A Weekly Email With Trending Projects For These Topics
No Spam. Unsubscribe easily at any time.
Python (1,136,873
Deep Learning (22,712
Natural Language Processing (4,583
Seq2seq (537
Semantic (474
Summarization (306
Related Projects