Awesome Open Source
Awesome Open Source


build status Maven Central License

Task-scheduler for Java that was inspired by the need for a clustered java.util.concurrent.ScheduledExecutorService simpler than Quartz.

As such, also appreciated by users (cbarbosa2, rafaelhofmann):

Your lib rocks! I'm so glad I got rid of Quartz and replaced it by yours which is way easier to handle!


See also why not Quartz?


  • Cluster-friendly. Guarantees execution by single scheduler instance.
  • Persistent tasks. Requires single database-table for persistence.
  • Embeddable. Built to be embedded in existing applications.
  • Simple.
  • Minimal dependencies. (slf4j)

Getting started

  1. Add maven dependency
  1. Create the scheduled_tasks table in your database-schema. See table definition for postgresql, oracle, mssql or mysql.

  2. Instantiate and start the scheduler, which then will start any defined recurring tasks.

RecurringTask<Void> hourlyTask = Tasks.recurring("my-hourly-task", FixedDelay.ofHours(1))
        .execute((inst, ctx) -> {

final Scheduler scheduler = Scheduler

// hourlyTask is automatically scheduled on startup if not already started (i.e. exists in the db)

For more examples, continue reading. For details on the inner workings, see How it works. If you have a Spring Boot application, have a look at Spring Boot Usage.

Who uses db-scheduler?

List of organizations known to be running db-scheduler in production:

Company Description
Digipost Provider of digital mailboxes in Norway
Vy Group One of the largest transport groups in the Nordic countries.
TransferWise A cheap, fast way to send money abroad.
Becker Professional Education
Monitoria Website monitoring service.

Feel free to open a PR to add your organization to the list.


See also runnable examples.

Recurring task

Define a recurring task and schedule the task's first execution on start-up using the startTasks builder-method. Upon completion, the task will be re-scheduled according to the defined schedule (see pre-defined schedule-types).

RecurringTask<Void> hourlyTask = Tasks.recurring("my-hourly-task", FixedDelay.ofHours(1))
        .execute((inst, ctx) -> {

final Scheduler scheduler = Scheduler

// hourlyTask is automatically scheduled on startup if not already started (i.e. exists in the db)

One-time tasks

An instance of a one-time task has a single execution-time some time in the future (i.e. non-recurring). The instance-id must be unique within this task, and may be used to encode some metadata (e.g. an id). For more complex state, custom serializable java objects are supported (as used in the example).

Define a one-time task and start the scheduler:

OneTimeTask<MyTaskData> myAdhocTask = Tasks.oneTime("my-typed-adhoc-task", MyTaskData.class)
        .execute((inst, ctx) -> {
            System.out.println("Executed! Custom data, Id: " + inst.getData().id);

final Scheduler scheduler = Scheduler
        .create(dataSource, myAdhocTask)


... and then at some point (at runtime), an execution is scheduled using the SchedulerClient:

// Schedule the task for execution a certain time in the future and optionally provide custom data for the execution
scheduler.schedule(myAdhocTask.instance("1045", new MyTaskData(1001L)),;

Proper shutdown of the scheduler

To avoid unnecessary dead exexutions, it is important to shutdown the scheduler properly, i.e. calling the shutdown method.

final Scheduler scheduler = Scheduler
        .create(dataSource, myAdhocTask)

Runtime.getRuntime().addShutdownHook(new Thread() {
    public void run() {"Received shutdown signal.");



Scheduler configuration

The scheduler is created using the Scheduler.create(...) builder. The builder has sensible defaults, but the following options are configurable.

Option Default Description
.threads(int) 10 Number of threads
.pollingInterval(Duration) 30s How often the scheduler checks the database for due executions.
.pollingLimit(int) 3 * <nr-of-threads> Maximum number of executions to fetch on a check for due executions.
.heartbeatInterval(Duration) 5m How often to update the heartbeat timestamp for running executions.
.schedulerName(SchedulerName) hostname Name of this scheduler-instance. The name is stored in the database when an execution is picked by a scheduler.
.tableName(String) scheduled_tasks Name of the table used to track task-executions. Change name in the table definitions accordingly when creating the table.
.serializer(Serializer) standard Java Serializer implementation to use when serializing task data.
.enableImmediateExecution() false If this is enabled, the scheduler will attempt to directly execute tasks that are scheduled to now(), or a time in the past. For this to work, the call to schedule(..) must not occur from within a transaction, because the record will not yet be visible to the scheduler (if this is a requirement, see the method scheduler.triggerCheckForDueExecutions())
.executorService(ExecutorService) null If specified, use this externally managed executor service to run executions. Ideally the number of threads it will use should still be supplied (for scheduler polling optimizations).
shutdownMaxWait(Duration) 30min How long the scheduler will wait before interrupting executor-service threads. If you find yourself using this, consider if it is possible to instead regularly check executionContext.getSchedulerState().isShuttingDown() in the ExecutionHandler and abort long-running task.
.deleteUnresolvedAfter(Duration) 14d The time after which executions with unknown tasks are automatically deleted. These can typically be old recurring tasks that are not in use anymore. This is non-zero to prevent accidental removal of tasks through a configuration error (missing known-tasks) and problems during rolling upgrades.
.jdbcCustomization(JdbcCustomization) auto db-scheduler tries to auto-detect the database used to see if any jdbc-interactions need to be customized. This method is an escape-hatch to allow for setting JdbcCustomizations explicitly.
.commitWhenAutocommitDisabled(boolean) false By default no commit is issued on DataSource Connections. If auto-commit is disabled, it is assumed that transactions are handled by an external transaction-manager. Set this property to true to override this behavior and have the Scheduler always issue commits.
.failureLogging(Level, boolean) WARN, true Configures how to log task failures, i.e. Throwables thrown from a task execution handler. Use log level OFF to disable this kind of logging completely.

Task configuration

Tasks are created using one of the builder-classes in Tasks. The builders have sensible defaults, but the following options can be overridden.

Option Default Description
.onFailure(FailureHandler) see desc. What to do when a ExecutionHandler throws an exception. By default, Recurring tasks are rescheduled according to their Schedule one-time tasks are retried again in 5m.
.onDeadExecution(DeadExecutionHandler) ReviveDeadExecution What to do when a dead executions is detected, i.e. an execution with a stale heartbeat timestamp. By default dead executions are rescheduled to now().
.initialData(T initialData) null The data to use the first time a recurring task is scheduled.


The library contains a number of Schedule-implementations for recurring tasks. See class Schedules.

Schedule Description
.daily(LocalTime ...) Runs every day at specified times. Optionally a time zone can be specified.
.fixedDelay(Duration) Next execution-time is Duration after last completed execution. Note: This Schedule schedules the initial execution to when used in startTasks(...)
.cron(String) Spring-style cron-expression.

Another option to configure schedules is reading string patterns with Schedules.parse(String).

The currently available patterns are:

Pattern Description
FIXED_DELAY|Ns Same as .fixedDelay(Duration) with duration set to N seconds.
DAILY|12:30,15:30...(|time_zone) Same as .daily(LocalTime) with optional time zone (e.g. Europe/Rome, UTC)

More details on the time zone formats can be found here.

Spring Boot usage

For Spring Boot applications, there is a starter db-scheduler-spring-boot-starter making the scheduler-wiring very simple. (See full example project).


  • An existing Spring Boot application
  • A working DataSource with schema initialized. (In the example HSQLDB is used and schema is automatically applied.)

Getting started

  1. Add the following Maven dependency
    NOTE: This includes the db-scheduler dependency itself.
  2. In your configuration, expose your Task's as Spring beans. If they are recurring, they will automatically be picked up and started.
  3. If you want to expose Scheduler state into actuator health information you need to enable db-scheduler health indicator. Spring Health Information.
  4. Run the app.

Configuration options

Configuration is mainly done via Configuration of scheduler-name, serializer and executor-service is done by adding a bean of type DbSchedulerCustomizer to your Spring context.

# example showing default values

# Ignored if a custom DbSchedulerStarter bean is defined

Interacting with scheduled executions using the SchedulerClient


How it works

A single database table is used to track future task-executions. When a task-execution is due, db-scheduler picks it and executes it. When the execution is done, the Task is consulted to see what should be done. For example, a RecurringTask is typically rescheduled in the future based on its Schedule.

Optimistic locking is used to guarantee that a one and only one scheduler-instance gets to pick a task-execution.

Recurring tasks

The term recurring task is used for tasks that should be run regularly, according to some schedule (see Tasks.recurring(..)).

When the execution of a recurring task has finished, a Schedule is consulted to determine what the next time for execution should be, and a future task-execution is created for that time (i.e. it is rescheduled). The time chosen will be the nearest time according to the Schedule, but still in the future.

To create the initial execution for a RecurringTask, the scheduler has a method startTasks(...) that takes a list of tasks that should be "started" if they do not already have an existing execution. The initial execution-time is determined by the Schedule. If the task already has a future execution (i.e. has been started at least once before), but an updated Schedule now indicates another execution-time, the existing execution will be rescheduled to the new execution-time (with the exception of non-deterministic schedules such as FixedDelay where new execution-time is further into the future).

One-time tasks

The term one-time task is used for tasks that have a single execution-time (see Tasks.oneTime(..)). In addition to encode data into the instanceIdof a task-execution, it is possible to store arbitrary binary data in a separate field for use at execution-time. By default, Java serialization is used to marshal/unmarshal the data.

Custom tasks

For tasks not fitting the above categories, it is possible to fully customize the behavior of the tasks using Tasks.custom(..).

Use-cases might be:

  • Recurring tasks that needs to update its data
  • Tasks that should be either rescheduled or removed based on output from the actual execution

Dead executions

During execution, the scheduler regularly updates a heartbeat-time for the task-execution. If an execution is marked as executing, but is not receiving updates to the heartbeat-time, it will be considered a dead execution after time X. That may for example happen if the JVM running the scheduler suddenly exits.

When a dead execution is found, the Taskis consulted to see what should be done. A dead RecurringTask is typically rescheduled to now().

Things to note / gotchas

  • There are no guarantees that all instants in a schedule for a RecurringTask will be executed. The Schedule is consulted after the previous task-execution finishes, and the closest time in the future will be selected for next execution-time. A new type of task may be added in the future to provide such functionality.

  • The methods on SchedulerClient (schedule, cancel, reschedule) and the CompletionHandler will run using a new Connectionfrom the DataSourceprovided. To have the action be a part of a transaction, it must be taken care of by the DataSourceprovided, for example using something like Spring's TransactionAwareDataSourceProxy.

  • Currently, the precision of db-scheduler is depending on the pollingInterval (default 10s) which specifies how often to look in the table for due executions. If you know what you are doing, the scheduler may be instructed at runtime to "look early" via scheduler.triggerCheckForDueExecutions(). (See also enableImmediateExecution() on the Builder)

Versions / upgrading

See releases for release-notes.

Upgrading to 8.x

  • Custom Schedules must implement a method boolean isDeterministic() to indicate whether they will always produce the same instants or not.

Upgrading to 4.x

  • Add column consecutive_failures to the database schema. See table definitions for postgresql, oracle or mysql. null is handled as 0, so no need to update existing records.

Upgrading to 3.x

  • No schema changes
  • Task creation are preferrably done through builders in Tasks class

Upgrading to 2.x


Why db-scheduler when there is Quartz?

The goal of db-scheduler is to be non-invasive and simple to use, but still solve the persistence problem, and the cluster-coordination problem. It was originally targeted at applications with modest database schemas, to which adding 11 tables would feel a bit overkill..

Why use a RDBMS for persistence and coordination?

KISS. It's the most common type of shared state applications have.

I am missing feature X?

Please create an issue with the feature request and we can discuss it there. If you are impatient (or feel like contributing), pull requests are most welcome :)

Is anybody using it?

Yes. It is used in production at a number of companies, and have so far run smoothly.

Get A Weekly Email With Trending Projects For These Topics
No Spam. Unsubscribe easily at any time.
java (30,358
hacktoberfest (4,217
spring-boot (726
scheduler (124
jdbc (82
job-scheduler (40
task-scheduler (30

Find Open Source By Browsing 7,000 Topics Across 59 Categories