Awesome Open Source
Awesome Open Source

# Binarytree: Python Library for Studying Binary Trees

Are you studying binary trees for your next exam, assignment or technical interview?

Binarytree is a Python library which lets you generate, visualize, inspect and manipulate binary trees. Skip the tedious work of setting up test data, and dive straight into practising your algorithms. Heaps and binary search trees are also supported. Self-balancing search trees like red-black or AVL will be added in the future.

Check out the documentation for more details.

Binarytree can be used with Graphviz and Jupyter Notebooks as well:

Python 3.7+

## Installation

Install via pip:

``````pip install binarytree --upgrade
``````

For conda users:

``````conda install binarytree -c conda-forge
``````

## Getting Started

Binarytree uses the following class to represent a node:

``````class Node:

def __init__(self, value, left=None, right=None):
self.value = value  # The node value (float/int/str)
self.left = left    # Left child
self.right = right  # Right child
``````

Generate and pretty-print various types of binary trees:

``````from binarytree import tree, bst, heap

# Generate a random binary tree and return its root node.
my_tree = tree(height=3, is_perfect=False)

# Generate a random BST and return its root node.
my_bst = bst(height=3, is_perfect=True)

# Generate a random max heap and return its root node.
my_heap = heap(height=3, is_max=True, is_perfect=False)

# Pretty-print the trees in stdout.
print(my_tree)
#
#        _______1_____
#       /             \
#      4__          ___3
#     /   \        /    \
#    0     9      13     14
#         / \       \
#        7   10      2
#
print(my_bst)
#
#            ______7_______
#           /              \
#        __3__           ___11___
#       /     \         /        \
#      1       5       9         _13
#     / \     / \     / \       /   \
#    0   2   4   6   8   10    12    14
#
print(my_heap)
#
#              _____14__
#             /         \
#        ____13__        9
#       /        \      / \
#      12         7    3   8
#     /  \       /
#    0    10    6
#
``````

Generate trees with letter values instead of numbers:

``````from binarytree import tree

my_tree = tree(height=3, is_perfect=False, letters=True)

print(my_tree)
#
#          ____H____
#         /         \
#      __E__         F__
#     /     \       /   \
#    M       G     J     B
#     \     /     /     / \
#      O   L     D     I   A
#
``````

``````from binarytree import Node

root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.right = Node(4)

print(root)
#
#      __1
#     /   \
#    2     3
#     \
#      4
#
``````

Inspect tree properties:

``````from binarytree import Node

root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)

print(root)
#
#        __1
#       /   \
#      2     3
#     / \
#    4   5
#
assert root.height == 2
assert root.is_balanced is True
assert root.is_bst is False
assert root.is_complete is True
assert root.is_max_heap is False
assert root.is_min_heap is True
assert root.is_perfect is False
assert root.is_strict is True
assert root.leaf_count == 3
assert root.max_leaf_depth == 2
assert root.max_node_value == 5
assert root.min_leaf_depth == 1
assert root.min_node_value == 1
assert root.size == 5

# See all properties at once.
assert root.properties == {
'height': 2,
'is_balanced': True,
'is_bst': False,
'is_complete': True,
'is_max_heap': False,
'is_min_heap': True,
'is_perfect': False,
'is_strict': True,
'leaf_count': 3,
'max_leaf_depth': 2,
'max_node_value': 5,
'min_leaf_depth': 1,
'min_node_value': 1,
'size': 5
}

print(root.leaves)
# [Node(3), Node(4), Node(5)]

print(root.levels)
# [[Node(1)], [Node(2), Node(3)], [Node(4), Node(5)]]
``````

Compare and clone trees:

``````from binarytree import tree

original = tree()

# Clone the binary tree.
clone = original.clone()

# Check if the trees are equal.
original.equals(clone)
``````

Use level-order (breadth-first) indexes to manipulate nodes:

``````from binarytree import Node

root = Node(1)                  # index: 0, value: 1
root.left = Node(2)             # index: 1, value: 2
root.right = Node(3)            # index: 2, value: 3
root.left.right = Node(4)       # index: 4, value: 4
root.left.right.left = Node(5)  # index: 9, value: 5

print(root)
#
#      ____1
#     /     \
#    2__     3
#       \
#        4
#       /
#      5
#
root.pprint(index=True)
#
#       _________0-1_
#      /             \
#    1-2_____        2-3
#            \
#           _4-4
#          /
#        9-5
#
print(root[9])
# Node(5)

# Replace the node/subtree at index 4.
root[4] = Node(6, left=Node(7), right=Node(8))
root.pprint(index=True)
#
#       ______________0-1_
#      /                  \
#    1-2_____             2-3
#            \
#           _4-6_
#          /     \
#        9-7     10-8
#

# Delete the node/subtree at index 1.
del root[1]
root.pprint(index=True)
#
#    0-1_
#        \
#        2-3
``````

Traverse trees using different algorithms:

``````from binarytree import Node

root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)

print(root)
#
#        __1
#       /   \
#      2     3
#     / \
#    4   5
#
print(root.inorder)
# [Node(4), Node(2), Node(5), Node(1), Node(3)]

print(root.preorder)
# [Node(1), Node(2), Node(4), Node(5), Node(3)]

print(root.postorder)
# [Node(4), Node(5), Node(2), Node(3), Node(1)]

print(root.levelorder)
# [Node(1), Node(2), Node(3), Node(4), Node(5)]

print(list(root)) # Equivalent to root.levelorder
# [Node(1), Node(2), Node(3), Node(4), Node(5)]
``````

Convert to list representations:

``````from binarytree import build

# Build a tree from list representation
values = [7, 3, 2, 6, 9, None, 1, 5, 8]
root = build(values)
print(root)
#
#            __7
#           /   \
#        __3     2
#       /   \     \
#      6     9     1
#     / \
#    5   8
#

# Go back to list representation
print(root.values)
# [7, 3, 2, 6, 9, None, 1, 5, 8]
``````

Binarytree supports another representation which is more compact but without the indexing properties (this method is often used in Leetcode):

``````from binarytree import build, build2, Node

# First let's create an example tree.
root = Node(1)
root.left = Node(2)
root.left.left = Node(3)
root.left.left.left = Node(4)
root.left.left.right = Node(5)
print(root)
#
#           1
#          /
#       __2
#      /
#     3
#    / \
#   4   5

# First representation is already shown above.
# All "null" nodes in each level are present.
print(root.values)
# [1, 2, None, 3, None, None, None, 4, 5]

# Second representation is more compact but without the indexing properties.
print(root.values2)
# [1, 2, None, 3, None, 4, 5]

# Build trees from the list representations
tree1 = build(root.values)
tree2 = build2(root.values2)
assert tree1.equals(tree2) is True
``````

Check out the documentation for more details.

Get A Weekly Email With Trending Projects For These Topics
No Spam. Unsubscribe easily at any time.
Python (806,773
Python2 (806,764
Python3 (806,763
Learning (76,219
Algorithms (37,445
Tree (20,456
Data Structures (9,591
Interview (5,125
Python Library (4,457
Heap (3,062
Interview Practice (740
Bst (643
Binary Tree (347
Binary Search Tree (276
Practise (20