Alternatives To Temporalconvolutionalnetworks
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
16 days ago5March 05, 20191,933otherPython
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow
Fashion Mnist9,856
a year ago24mitPython
A MNIST-like fashion product database. Benchmark :point_down:
16 hours ago1apache-2.0
Techniques for deep learning with satellite & aerial imagery
2 years ago14C++
机器人视觉 移动机器人 VS-SLAM ORB-SLAM2 深度学习目标检测 yolov3 行为检测 opencv PCL 机器学习 无人驾驶
Keras Resources3,174
4 months ago13
Directory of tutorials and open-source code repositories for working with Keras, the Python deep learning library
Super Slomo2,873
18 days ago29mitPython
PyTorch implementation of Super SloMo by Jiang et al.
Tensorflow 1012,450
3 years ago15mitJupyter Notebook
TensorFlow Tutorials
5 years ago42Python
CNNs for sentence classification
a year ago7mitJupyter Notebook
Datasets, tools, and benchmarks for representation learning of code.
Twitter Sentiment Analysis1,322
a month ago20mitPython
Sentiment analysis on tweets using Naive Bayes, SVM, CNN, LSTM, etc.
Alternatives To Temporalconvolutionalnetworks
Select To Compare

Alternative Project Comparisons

Temporal Convolutional Networks

This code implements the video- and sensor-based action segmentation models from Temporal Convolutional Networks for Action Segmentation and Detection by Colin Lea, Michael Flynn, Rene Vidal, Austin Reiter, Greg Hager arXiv 2016 (in-review).

It was originally developed for use with the 50 Salads, GTEA, MERL Shopping, and JIGSAWS datasets. Recently we have also achieved high action segmentation performance on medical data, in robotics applications, and using accelerometer data from the UCI Smartphone dataset.

An abbreviated version of this work was described at the ECCV 2016 Workshop on BNMW.

Requirements: TensorFlow, Keras (1.1.2+)

Requirements (optional):

  • Numba: This makes the metrics much faster to compute but can be removed is necessary.
  • LCTM: Our older Conditional Random Field-based models.

Tested on Python 3.5. May work on Python 2.7 but is untested.

Contents (code folder)

  • TCN_main.py. -- Main script for evaluation. I suggest interactively working with this in an iPython shell.
  • compare_predictions.py -- Script to output stats on each set of predictions.
  • datasets.py -- Adapters for processing specific datasets with a common interface.
  • metrics.py -- Functions for computing other performance metrics. These usually take the form score(P, Y, bg_class) where P are the predictions, Y are the ground-truth labels, and bg_class is the background class.
  • tf_models.py -- Models built with TensorFlow / Keras.
  • utils.py -- Utilities for manipulating data.


The features used for many of the datasets we use are linked below. The video features are the output of a Spatial CNN trained using image and motion information as mentioned in the paper. To get features from the MERL dataset talk to Bharat Signh at UMD.

Each set of features should be placed in the features folder (e.g., [TCN_directory]/features/GTEA/SpatialCNN/).

Each .mat file contains three or four types of data: 'Y' refers to the ground truth action labels for each sequence, 'X' is the per-frame probability as output from a Spatial CNN applied to each frame of video, 'A' is the 128-dim intermediate fully connected layer from the Spatial CNN applied at each frame, and if available 'S' is the sensor data (accelerometer signals in 50 Salads, robot kinematics in JIGSAWS).

There are a set of corresponding splits for each dataset in [TCN_directory]/splits/[dataset]. These should be easy to use with the dataset loader included here.

Popular Dataset Projects
Popular Convolutional Neural Networks Projects
Popular Data Processing Categories

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Convolutional Networks