Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Pytorch | 64,434 | 146 | 17 hours ago | 23 | August 10, 2022 | 11,492 | other | C++ | ||
Tensors and Dynamic neural networks in Python with strong GPU acceleration | ||||||||||
Tensorflow Examples | 42,312 | 5 months ago | 218 | other | Jupyter Notebook | |||||
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2) | ||||||||||
Pytorch Tutorial | 25,860 | 17 days ago | 88 | mit | Python | |||||
PyTorch Tutorial for Deep Learning Researchers | ||||||||||
Data Science Ipython Notebooks | 23,924 | 6 months ago | 26 | other | Python | |||||
Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines. | ||||||||||
Ml From Scratch | 21,618 | 5 months ago | 4 | June 17, 2017 | 48 | mit | Python | |||
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning. | ||||||||||
Awesome Deep Learning | 20,409 | 20 days ago | 25 | |||||||
A curated list of awesome Deep Learning tutorials, projects and communities. | ||||||||||
Jina | 17,896 | 2 | a day ago | 2,019 | July 06, 2022 | 39 | apache-2.0 | Python | ||
🔮 Build multimodal AI services via cloud native technologies · Neural Search · Generative AI · Cloud Native | ||||||||||
Awesome Tensorflow | 16,809 | 3 months ago | 30 | cc0-1.0 | ||||||
TensorFlow - A curated list of dedicated resources http://tensorflow.org | ||||||||||
Lectures | 14,554 | 6 years ago | 10 | |||||||
Oxford Deep NLP 2017 course | ||||||||||
Openface | 14,540 | 5 months ago | 13 | apache-2.0 | Lua | |||||
Face recognition with deep neural networks. |
这个仓库是使用TensorFlow 2.0
框架,并基于 cvpr2019-arcface 论文上完成的,其中主要分为四大块:人脸检测、人脸矫正、提取特征和特征比对。各个模块的大小和在我的 17 款 macbook-pro 的 CPU 上跑耗时如下:
注册人脸的方式有两种,分别是:
$ python register_face.py -person Sam -camera
按 s
键保存图片,需要在不同距离和角度拍摄 10 张图片或者按 q
退出。
保证文件的名字与注册人名相同,并且每张图片只能出现一张这个 ID 的人脸。
$ python register_face.py -person Jay
Method | LFW(%) | CFP-FP(%) | AgeDB-30(%) | MegaFace(%) | cpu-time | weights |
---|---|---|---|---|---|---|
MobileFaceNet | 99.50 | 88.94 | 95.91 | --- | 35ms | 下载链接 |
IResNet | 99.77 | 98.27 | 98.28 | 98.47 | 435ms | 提取码: xgmo |
识别模型用的是 MobileFaceNet
网络,这里直接使用了 insightface 在 ms1m-refine-v1 三百万多万张人脸数据集上训练的模型。这部分工作在 mxnet
分支上,你可以通过 git checkout mxnet
进行切换。
由于该模型是 mxnet 格式,因此使用了 mmdnn 导出了其模型权重 mobilefacenet.npy
。接着使用了 TF2
自己手写了一个 MobileFaceNet
网络并导入权重,预测精度没有任何损失。这部分工作在 master
分支上。
最后,如果你要识别人脸,可以执行:
$ python main.py