Face_recognition

🍎 My own face recognition with deep neural networks.
Alternatives To Face_recognition
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Pytorch64,43414617 hours ago23August 10, 202211,492otherC++
Tensors and Dynamic neural networks in Python with strong GPU acceleration
Tensorflow Examples42,312
5 months ago218otherJupyter Notebook
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)
Pytorch Tutorial25,860
17 days ago88mitPython
PyTorch Tutorial for Deep Learning Researchers
Data Science Ipython Notebooks23,924
6 months ago26otherPython
Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines.
Ml From Scratch21,618
5 months ago4June 17, 201748mitPython
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Awesome Deep Learning20,409
20 days ago25
A curated list of awesome Deep Learning tutorials, projects and communities.
Jina17,8962a day ago2,019July 06, 202239apache-2.0Python
🔮 Build multimodal AI services via cloud native technologies · Neural Search · Generative AI · Cloud Native
Awesome Tensorflow16,809
3 months ago30cc0-1.0
TensorFlow - A curated list of dedicated resources http://tensorflow.org
Lectures14,554
6 years ago10
Oxford Deep NLP 2017 course
Openface14,540
5 months ago13apache-2.0Lua
Face recognition with deep neural networks.
Alternatives To Face_recognition
Select To Compare


Alternative Project Comparisons
Readme

人脸识别


这个仓库是使用TensorFlow 2.0框架,并基于 cvpr2019-arcface 论文上完成的,其中主要分为四大块:人脸检测、人脸矫正、提取特征和特征比对。各个模块的大小和在我的 17 款 macbook-pro 的 CPU 上跑耗时如下:

  • 人脸检测:使用的是 mtcnn 网络,模型大小约 1.9MB,耗时约 30ms;
  • 人脸矫正:OpenCV 的仿射变换,耗时约 0.83ms;
  • 提取特征:使用 MobileFaceNet(或IResNet)网络,耗时约30ms;
  • 特征比对:使用曼哈顿距离,单次搜索和完成比对耗时约 0.011 ms;

注册人脸


注册人脸的方式有两种,分别是:

  1. 打开相机注册:
$ python register_face.py -person Sam -camera

s 键保存图片,需要在不同距离和角度拍摄 10 张图片或者按 q 退出。

  1. 导入人脸图片:

保证文件的名字与注册人名相同,并且每张图片只能出现一张这个 ID 的人脸。

$ python register_face.py -person Jay

识别人脸


Method LFW(%) CFP-FP(%) AgeDB-30(%) MegaFace(%) cpu-time weights
MobileFaceNet 99.50 88.94 95.91 --- 35ms 下载链接
IResNet 99.77 98.27 98.28 98.47 435ms 提取码: xgmo

识别模型用的是 MobileFaceNet 网络,这里直接使用了 insightface 在 ms1m-refine-v1 三百万多万张人脸数据集上训练的模型。这部分工作在 mxnet 分支上,你可以通过 git checkout mxnet 进行切换。

由于该模型是 mxnet 格式,因此使用了 mmdnn 导出了其模型权重 mobilefacenet.npy。接着使用了 TF2 自己手写了一个 MobileFaceNet 网络并导入权重,预测精度没有任何损失。这部分工作在 master 分支上。

最后,如果你要识别人脸,可以执行:

$ python main.py
Popular Neural Projects
Popular Deep Learning Projects
Popular Machine Learning Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Python
Deep Learning
Deep
Neural
Neural Network
Face
Recognition
Image Processing
Object Detection
Face Recognition
Image Classification
Face Detection
Mtcnn