PyPSA stands for "Python for Power System Analysis". It is pronounced "pipes-ah".
PyPSA is an open source toolbox for simulating and optimising modern power and energy systems that include features such as conventional generators with unit commitment, variable wind and solar generation, storage units, coupling to other energy sectors, and mixed alternating and direct current networks. PyPSA is designed to scale well with large networks and long time series.
This project is maintained by the Department of Digital Transformation in Energy Systems at the Technical University of Berlin. Previous versions were developed by the Energy System Modelling group at the Institute for Automation and Applied Informatics at the Karlsruhe Institute of Technology funded by the Helmholtz Association, and by the Renewable Energy Group at FIAS to carry out simulations for the CoNDyNet project, financed by the German Federal Ministry for Education and Research (BMBF) as part of the Stromnetze Research Initiative.
PyPSA can calculate:
It has models for:
pip:
pip install pypsa
conda/mamba:
conda install -c conda-forge pypsa
Additionally, install a solver.
import pypsa
# create a new network
n = pypsa.Network()
n.add("Bus", "mybus")
n.add("Load", "myload", bus="mybus", p_set=100)
n.add("Generator", "mygen", bus="mybus", p_nom=100, marginal_cost=20)
# load an example network
n = pypsa.examples.ac_dc_meshed()
# run the optimisation
n.optimize()
# plot results
n.generators_t.p.plot()
n.plot()
# get statistics
n.statistics()
n.statistics.energy_balance()
There are more extensive examples available as Jupyter notebooks. They are also described in the doc/examples.rst and are available as Python scripts in examples/.
PyPSA-Eur optimising capacities of generation, storage and transmission lines (9% line volume expansion allowed) for a 95% reduction in CO2 emissions in Europe compared to 1990 levels
SciGRID model simulating the German power system for 2015.
PyPSA is written and tested to be compatible with Python 3.7 and above. The last release supporting Python 2.7 was PyPSA 0.15.0.
It leans heavily on the following Python packages:
The optimisation uses interface libraries like linopy
which are
independent of the preferred solver. You can use e.g. one of the free
solvers GLPK and
CLP/CBC or the commercial solver
Gurobi for which free academic licenses are
available.
Please check the documentation.
We strongly welcome anyone interested in contributing to this project. If you have any ideas, suggestions or encounter problems, feel invited to file issues or make pull requests on GitHub.
Please respect our code of conduct.
If you use PyPSA for your research, we would appreciate it if you would cite the following paper:
Please use the following BibTeX:
@article{PyPSA,
author = {T. Brown and J. H\"orsch and D. Schlachtberger},
title = {{PyPSA: Python for Power System Analysis}},
journal = {Journal of Open Research Software},
volume = {6},
issue = {1},
number = {4},
year = {2018},
eprint = {1707.09913},
url = {https://doi.org/10.5334/jors.188},
doi = {10.5334/jors.188}
}
If you want to cite a specific PyPSA version, each release of PyPSA is stored on Zenodo with a release-specific DOI. The release-specific DOIs can be found linked from the overall PyPSA Zenodo DOI for Version 0.17.1 and onwards:
or from the overall PyPSA Zenodo DOI for Versions up to 0.17.0:
Copyright 2015-2023 PyPSA Developers
PyPSA is licensed under the open source MIT License.