Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Flamegraph | 15,308 | 2 days ago | 1 | March 03, 2021 | 150 | Perl | ||||
Stack trace visualizer | ||||||||||
Tensorflow | 2,033 | 7 years ago | 1 | |||||||
图解tensorflow 源码 | ||||||||||
Graph2vec | 791 | a year ago | 1 | gpl-3.0 | Python | |||||
A parallel implementation of "graph2vec: Learning Distributed Representations of Graphs" (MLGWorkshop 2017). | ||||||||||
Grakel | 502 | 1 | 6 months ago | 5 | September 09, 2019 | 6 | other | Python | ||
A scikit-learn compatible library for graph kernels | ||||||||||
Kokkos Kernels | 238 | 21 hours ago | 235 | other | C++ | |||||
Kokkos C++ Performance Portability Programming EcoSystem: Math Kernels - Provides BLAS, Sparse BLAS and Graph Kernels | ||||||||||
Gmatch4py | 166 | 7 months ago | 11 | mit | Cython | |||||
A graph matching library for Python | ||||||||||
Kernelgat | 147 | a year ago | 2 | mit | Python | |||||
The source codes for Fine-grained Fact Verification with Kernel Graph Attention Network. | ||||||||||
Dgcnn | 136 | 5 years ago | mit | MATLAB | ||||||
Code for "M. Zhang, Z. Cui, M. Neumann, and Y. Chen, An End-to-End Deep Learning Architecture for Graph Classification, AAAI-18". | ||||||||||
Traceshark | 117 | a month ago | 3 | gpl-3.0 | C++ | |||||
This is a tool for Linux kernel ftrace and perf events visualization | ||||||||||
Assignment2 2018 | 111 | 5 years ago | Python | |||||||
(Spring 2018) Assignment 2: Graph Executor with TVM |
This repository implements Graph Neural Tangent Kernel (infinitely wide multi-layer GNNs trained by gradient descent), described in the following paper:
Simon S. Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, Keyulu Xu. Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels. NeurIPS 2019. [arXiv] [Paper]
Unzip the dataset file
unzip dataset.zip
Here we demonstrate how to use GNTK to perform classification on IMDB-BINARY dataset. We set the number of BLOCK operations to be 2, the number of MLP layers to be 2 and c_u to be 1.
Compute the GNTK gram matrix
mkdir out
python gram.py --dataset IMDBBINARY --num_mlp_layers 2 --num_layers 2 --scale uniform --jk 1 --out_dir out
Classification with kernel regression
python search.py --data_dir ./out --dataset IMDBBINARY
Therefore we get the hyper-parameter search results at ./out/grid_search.csv
.
To run the experiment described in our paper, please run bash run_gram.sh
and bash run_search.sh
in order.