Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Bokeh | 17,398 | 2,936 | 617 | 9 hours ago | 136 | July 05, 2022 | 697 | bsd-3-clause | Python | |
Interactive Data Visualization in the browser, from Python | ||||||||||
Visdom | 9,521 | 326 | 49 | 3 days ago | 26 | September 12, 2019 | 109 | apache-2.0 | Python | |
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy. | ||||||||||
Scientific Visualization Book | 9,131 | 9 days ago | 17 | other | Python | |||||
An open access book on scientific visualization using python and matplotlib | ||||||||||
Clip | 5,132 | 17 | 4 | 3 years ago | 32 | June 25, 2013 | 1 | apache-2.0 | C++ | |
Create charts from the command line | ||||||||||
Vega Lite | 4,059 | 306 | 126 | 3 days ago | 374 | September 22, 2022 | 626 | bsd-3-clause | TypeScript | |
A concise grammar of interactive graphics, built on Vega. | ||||||||||
Ali | 3,419 | 2 days ago | 40 | November 09, 2021 | 19 | mit | Go | |||
Generate HTTP load and plot the results in real-time | ||||||||||
Plotjuggler | 3,336 | 5 days ago | 89 | mpl-2.0 | C++ | |||||
The Time Series Visualization Tool that you deserve. | ||||||||||
Chartify | 3,304 | 5 | a day ago | 16 | November 02, 2020 | 48 | apache-2.0 | Python | ||
Python library that makes it easy for data scientists to create charts. | ||||||||||
Matplotplusplus | 3,082 | a month ago | 1 | March 03, 2021 | 30 | mit | C++ | |||
Matplot++: A C++ Graphics Library for Data Visualization 📊🗾 | ||||||||||
Scottplot | 2,995 | 3 | 15 | 2 days ago | 121 | September 09, 2022 | 65 | mit | C# | |
Interactive plotting library for .NET |
The ridgeplot
python library aims at providing a simple API for plotting beautiful
ridgeline plots within the extensive
Plotly interactive graphing environment.
Bumper stickers:
The source code is currently hosted on GitHub at: tpvasconcelos/ridgeplot
Install and update using pip:
pip install -U ridgeplot
ridgeplot
The official docs can be found at: https://ridgeplot.readthedocs.io/en/stable/
import numpy as np
from ridgeplot import ridgeplot
# Put your real samples here...
np.random.seed(0)
synthetic_samples = [np.random.normal(n / 1.2, size=600) for n in range(9, 0, -1)]
# Call the `ridgeplot()` helper, packed with sensible defaults
fig = ridgeplot(samples=synthetic_samples)
# The returned Plotly `Figure` is still fully customizable
fig.update_layout(height=500, width=800)
# show us the work!
fig.show()
In this example, we will be replicating the first ridgeline plot example in this from Data to Viz post, which uses the probly dataset. You can find the plobly dataset on multiple sources like in the bokeh python interactive visualization library. I'll be using the same source used in the original post.
import numpy as np
from ridgeplot import ridgeplot
from ridgeplot.datasets import load_probly
# Load the probly dataset
df = load_probly()
# Let's grab only the subset of columns displayed in the example
column_names = [
"Almost Certainly", "Very Good Chance", "We Believe", "Likely",
"About Even", "Little Chance", "Chances Are Slight", "Almost No Chance",
] # fmt: skip
df = df[column_names]
# Not only does 'ridgeplot(...)' come configured with sensible defaults
# but is also fully configurable to your own style and preference!
fig = ridgeplot(
samples=df.values.T,
bandwidth=4,
kde_points=np.linspace(-12.5, 112.5, 400),
colorscale="viridis",
colormode="index",
coloralpha=0.6,
labels=column_names,
spacing=5 / 9,
)
# Again, update the figure layout to your liking here
fig.update_layout(
title="What probability would you assign to the phrase <i>Highly likely</i>?",
height=650,
width=800,
plot_bgcolor="rgba(255, 255, 255, 0.0)",
xaxis_gridcolor="rgba(0, 0, 0, 0.1)",
yaxis_gridcolor="rgba(0, 0, 0, 0.1)",
yaxis_title="Assigned Probability (%)",
)
fig.show()