Recalgorithm

主流推荐系统Rank算法的实现
Alternatives To Recalgorithm
Select To Compare


Readme

Rank

Python TensorFlow Versions

  • Ranksaved_model``checkpoint``tf-serving
  • ./dataset/README.md
  • TensorFlow EstimatorformatTfrecord
  • ./algrithmpyDINdin.pyDIN
  • model_fn``KerasAPITensorFlowAPI
  • --parameter_name=parameter_value``tf.app.flags
  • read_comemnt``read_commet like click_avatar

Models

Model Paper *Best_read_comment_Auc
FFM [2016] Field-aware Factorization Machines for CTR Prediction 0.8911285
DeepCrossing [2016] Deep Crossing - Web-Scale Modeling without Manually Crafted Combinatorial Features 0.9185908
PNN [2016] Product-based neural networks for user response prediction 0.9065931
Wide & Deep [2016] Wide & Deep Learning for Recommender Systems 0.9133482
DeepFM [2017] DeepFM: A Factorization-Machine based Neural Network for CTR Prediction 0.8529998
DCN [2017] Deep & Cross Network for Ad Click Predictions 0.9183242
AFM [2017] Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks 0.9117872
xDeepFM [2018] xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems 0.9152467
FwFM [2018] Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising 0.9118794
DIN [2018] Deep Interest Network for Click-Through Rate Prediction 0.9116896
DIEN [2018] Deep Interest Evolution Network for Click-Through Rate Prediction -
FiBiNet [2019] FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction 0.9149044
BST [2019] Behavior sequence transformer for e-commerce recommendation in Alibaba 0.9165866

*Best_read_comment_AucmodelAucmodelmodelresult.md *DIEN

Models

Model Paper *Best_read_commet_AUC *Best_like_AUC *Best_click_avatar_AUC
ESMM [2018] Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate - - -
MMOE [2018] Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts 0.91860557 0.8126400 0.8139362
PLE [2020] Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations 0.91965175 0.8136461 0.8154559

*Best_xx_AUCAUC *ESMM

# tfrecord
# cd ./dataset/wechat_algo_data1
# python DataGenerator.py && cd ..
cd ./DIN
# 
python din.py --use_softmax=True 

To Do List

  • Trick: Uncertainty, GradNorm, PCGrad, etc.
  • AutoInt, FLEN, etc.
  • , , Shicoder/Deep_Rec

issue

pic
Popular Machine Learning Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Python
Deep Learning