Awesome Open Source
Awesome Open Source

License: Apache 2 Datatile Slack Docs GitHub GitHub

Datatile

A library for managing, summarizing, and visualizing data.

N.B.1: pandas-summary was renamed to datatile, a more ambitious project with sevral planned features and enhancements to add support for visualizations, quality checks, linking summaries to versions, and integrations with third party libraries.

Installation

The module can be easily installed with pip:

> pip install datatile

This module depends on numpy and pandas. Optionally you can get also some nice visualisations if you have matplotlib installed.

Tests

To run the tests, execute the command python setup.py test

Usage

DataFrameSummary

An extension to pandas dataframes describe function.

The module contains DataFrameSummary object that extend describe() with:

  • properties
    • dfs.columns_stats: counts, uniques, missing, missing_perc, and type per column
    • dsf.columns_types: a count of the types of columns
    • dfs[column]: more in depth summary of the column
  • function
    • summary(): extends the describe() function with the values with columns_stats

The DataFrameSummary expect a pandas DataFrame to summarise.

from datatile.summary.df import DataFrameSummary

dfs = DataFrameSummary(df)

getting the columns types

dfs.columns_types


numeric     9
bool        3
categorical 2
unique      1
date        1
constant    1
dtype: int64

getting the columns stats

dfs.columns_stats


                      A            B        C              D              E
counts             5802         5794     5781           5781           4617
uniques            5802            3     5771            128            121
missing               0            8       21             21           1185
missing_perc         0%        0.14%    0.36%          0.36%         20.42%
types            unique  categorical  numeric        numeric        numeric

getting a single column summary, e.g. numerical column

# we can also access the column using numbers A[1]
dfs['A']

std                                                                 0.2827146
max                                                                  1.072792
min                                                                         0
variance                                                           0.07992753
mean                                                                0.5548516
5%                                                                  0.1603367
25%                                                                 0.3199776
50%                                                                 0.4968588
75%                                                                 0.8274732
95%                                                                  1.011255
iqr                                                                 0.5074956
kurtosis                                                            -1.208469
skewness                                                            0.2679559
sum                                                                  3207.597
mad                                                                 0.2459508
cv                                                                  0.5095319
zeros_num                                                                  11
zeros_perc                                                               0,1%
deviating_of_mean                                                          21
deviating_of_mean_perc                                                  0.36%
deviating_of_median                                                        21
deviating_of_median_perc                                                0.36%
top_correlations                         {u'D': 0.702240243124, u'E': -0.663}
counts                                                                   5781
uniques                                                                  5771
missing                                                                    21
missing_perc                                                            0.36%
types                                                                 numeric
Name: A, dtype: object

Future development

Summaries

  • [ ] Add summary analysis between columns, i.e. dfs[[1, 2]]

Visualizations

  • [ ] Add summary visualization with matplotlib.
  • [ ] Add summary visualization with plotly.
  • [ ] Add summary visualization with altair.
  • [ ] Add predefined profiling.

Catalog and Versions

  • [ ] Add possibility to persist summary and link to a specific version.
  • [ ] Integrate with quality libraries.
Alternatives To Datatile
Select To Compare


Alternative Project Comparisons
Related Awesome Lists
Top Programming Languages

Get A Weekly Email With Trending Projects For These Topics
No Spam. Unsubscribe easily at any time.
Python (862,627
Data Science (11,053
Spark (10,788
Statistics (10,746
Pandas (7,001
Data Visualization (6,079
Data Analysis (5,179
Matplotlib (4,220
Dataframe (2,804
Plotly (1,736
Mlops (539
Dask (186
Data Quality (133
Dataops (96
Data Exploration (85
Data Profiling (36
Data Quality Checks (21
Data Quality Monitoring (20
Data Summary (5
Data Reporting (3