Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Open_stt | 671 | a year ago | 3 | other | Python | |||||
Open STT | ||||||||||
Awesome Lidar | 489 | 4 days ago | cc0-1.0 | |||||||
😎 Awesome LIDAR list. The list includes LIDAR manufacturers, datasets, point cloud-processing algorithms, point cloud frameworks and simulators. | ||||||||||
Deepfake Detection | 311 | a year ago | 7 | mit | Python | |||||
Towards deepfake detection that actually works | ||||||||||
Datascience_course | 289 | 2 years ago | 4 | mit | Jupyter Notebook | |||||
Curso de Data Science em Português | ||||||||||
Tournesol | 257 | 19 hours ago | 126 | other | Python | |||||
Free and open source code of the https://tournesol.app platform. Meet the community on Discord https://discord.gg/WvcSG55Bf3 | ||||||||||
Rvos | 242 | 2 years ago | 21 | other | Python | |||||
RVOS: End-to-End Recurrent Network for Video Object Segmentation (CVPR 2019) | ||||||||||
Awesome Mobile Robotics | 233 | a month ago | ||||||||
Useful links of different content related to AI, Computer Vision, and Robotics. | ||||||||||
Youtube Bb | 167 | 5 years ago | 2 | mit | Python | |||||
Public repo for helpful scripts when using the YouTube Bounding Boxes dataset | ||||||||||
How To Learn From Little Data | 146 | 6 years ago | 3 | mit | Python | |||||
This is the code for "How to Learn from Little Data - Intro to Deep Learning #17' by Siraj Raval on YouTube | ||||||||||
Vggsound | 121 | 2 years ago | 2 | other | Python | |||||
VGGSound: A Large-scale Audio-Visual Dataset |
#Prepare Dataset Challenge
#Overview
This is the code for this video by Siraj on Youtube. The brainscan dataset is entirely fictional, but serves as a good example on how to prepare a dataset. Real examples do exist but, too many features to sift through for a short video.
##Dependencies
##Demo
Run the following in terminal
$ python softmax.py --train simdata/linear_data_train.csv --test simdata/linear_data_eval.csv --num_epochs 5 --verbose True
Add your own test data to test the model out.
##Challenge The challenge for this video is to create a pokemon classifier by their type 1 (i.e fire, water, grass, etc.) using this pokemon dataset on Kaggle. It will be great practice in data preparation (feature selection, cleaning, etc.) Post your github link in the comments and i'll announce the winner in the next video. Due date is December 22nd at Noon PST.
##Credits
Credits go to Jason Baldridge. I've merely created a wrapper to get people started.