Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Pytorch | 64,575 | 146 | 21 hours ago | 23 | August 10, 2022 | 11,522 | other | C++ | ||
Tensors and Dynamic neural networks in Python with strong GPU acceleration | ||||||||||
Tensorflow Examples | 42,312 | 5 months ago | 218 | other | Jupyter Notebook | |||||
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2) | ||||||||||
Pytorch Tutorial | 25,860 | 20 days ago | 88 | mit | Python | |||||
PyTorch Tutorial for Deep Learning Researchers | ||||||||||
Darknet | 23,950 | 9 days ago | 1,948 | other | C | |||||
Convolutional Neural Networks | ||||||||||
Ml From Scratch | 21,618 | 5 months ago | 4 | June 17, 2017 | 48 | mit | Python | |||
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning. | ||||||||||
Plotneuralnet | 18,647 | 3 months ago | 76 | mit | TeX | |||||
Latex code for making neural networks diagrams | ||||||||||
Awesome Tensorflow | 16,809 | 3 months ago | 30 | cc0-1.0 | ||||||
TensorFlow - A curated list of dedicated resources http://tensorflow.org | ||||||||||
Openface | 14,540 | 5 months ago | 13 | apache-2.0 | Lua | |||||
Face recognition with deep neural networks. | ||||||||||
Pwc | 14,522 | 3 years ago | 22 | |||||||
Papers with code. Sorted by stars. Updated weekly. | ||||||||||
Deeplearning_ai_books | 14,417 | a year ago | 53 | HTML | ||||||
deeplearning.ai(吴恩达老师的深度学习课程笔记及资源) |
Simple neural network is a Java project that allow users to easily create a asynchronous simple neural network.
This project can be used to predict a output based on a initial learning.
This is a simple usage with default configuration:
First of all, load input and output data. You can read it from external text file:
float[][] x = DataUtils.readInputsFromFile("data/x.txt");
int[] t = DataUtils.readOutputsFromFile("data/t.txt");
2. Instantiate new NeuralNetwork and create a new callback to receive response:
java
NeuralNetwork neuralNetwork = new NeuralNetwork(x, t, new INeuralNetworkCallback() {
@Override
public void success(Result result) {
}
@Override
public void failure(Error error) {
}
});
```
Predict a value using Result entity from success response:
@Override
public void success(Result result) {
float[] valueToPredict = new float[] {-1.2f, 0.796f};
System.out.println("Predicted result: " + result.predictValue(valueToPredict));
}
Finally, run learning of neural network:
neuralNetwork.startLearning(); ```
Full example:
float[][] x = DataUtils.readInputsFromFile("data/x.txt");
int[] t = DataUtils.readOutputsFromFile("data/t.txt");
NeuralNetwork neuralNetwork = new NeuralNetwork(x, t, new INeuralNetworkCallback() {
@Override
public void success(Result result) {
float[] valueToPredict = new float[] {-0.205f, 0.780f};
System.out.println("Success percentage: " + result.getSuccessPercentage());
System.out.println("Predicted result: " + result.predictValue(valueToPredict));
}
@Override
public void failure(Error error) {
System.out.println("Error: " + error.getDescription());
}
});
neuralNetwork.startLearning();
Output:
Success percentage: 88.4
Predicted result: 1
You can customize some values as the number of neurons, bucle iterations limit, transfer function and result parser.
This project has a example with real data that contains a list of 250 patients with two results of a analysis as inputs and 0 or 1 (depending if the has a disease or not) as output:
Inputs Output
------------------------ --------------------
Result 1 Result 2 Disease
----------------------- --------------------
-0.5982 0.9870 1
-0.2019 0.6210 1
0.1797 0.4518 0
-0.0982 0.5876 1
... ... ...
Using this data in neural network, this project is able to predict the output (disease result) of a patient that isn't in the data list with a minimum percentage of success of 88%.
Copyright 2014 José Luis Martín
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.