Simple neural network implementation in Java
Alternatives To Simpleneuralnetwork
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Pytorch64,57514621 hours ago23August 10, 202211,522otherC++
Tensors and Dynamic neural networks in Python with strong GPU acceleration
Tensorflow Examples42,312
5 months ago218otherJupyter Notebook
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)
Pytorch Tutorial25,860
20 days ago88mitPython
PyTorch Tutorial for Deep Learning Researchers
9 days ago1,948otherC
Convolutional Neural Networks
Ml From Scratch21,618
5 months ago4June 17, 201748mitPython
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
3 months ago76mitTeX
Latex code for making neural networks diagrams
Awesome Tensorflow16,809
3 months ago30cc0-1.0
TensorFlow - A curated list of dedicated resources
5 months ago13apache-2.0Lua
Face recognition with deep neural networks.
3 years ago22
Papers with code. Sorted by stars. Updated weekly.
a year ago53HTML吴恩达老师的深度学习课程笔记及资源)
Alternatives To Simpleneuralnetwork
Select To Compare

Alternative Project Comparisons

Simple neural network

Simple neural network is a Java project that allow users to easily create a asynchronous simple neural network.

This project can be used to predict a output based on a initial learning.


  • Callback with a result entity
  • Number of neurons customizable
  • Read data from external files
  • Simple predictor usage


This is a simple usage with default configuration:

  1. First of all, load input and output data. You can read it from external text file:

float[][] x = DataUtils.readInputsFromFile("data/x.txt"); int[] t = DataUtils.readOutputsFromFile("data/t.txt"); 2. Instantiate new NeuralNetwork and create a new callback to receive response: java NeuralNetwork neuralNetwork = new NeuralNetwork(x, t, new INeuralNetworkCallback() { @Override public void success(Result result) { }

        public void failure(Error error) {
  1. Predict a value using Result entity from success response:

    public void success(Result result) {
        float[] valueToPredict = new float[] {-1.2f, 0.796f};
        System.out.println("Predicted result: " + result.predictValue(valueToPredict));
  2. Finally, run learning of neural network:

neuralNetwork.startLearning(); ```

Full example:

        float[][] x = DataUtils.readInputsFromFile("data/x.txt");
        int[] t = DataUtils.readOutputsFromFile("data/t.txt");

        NeuralNetwork neuralNetwork = new NeuralNetwork(x, t, new INeuralNetworkCallback() {
            public void success(Result result) {
                float[] valueToPredict = new float[] {-0.205f, 0.780f};
                System.out.println("Success percentage: " + result.getSuccessPercentage());
                System.out.println("Predicted result: " + result.predictValue(valueToPredict));

            public void failure(Error error) {
                System.out.println("Error: " + error.getDescription());



Success percentage: 88.4
Predicted result: 1

You can customize some values as the number of neurons, bucle iterations limit, transfer function and result parser.


This project has a example with real data that contains a list of 250 patients with two results of a analysis as inputs and 0 or 1 (depending if the has a disease or not) as output:

         Inputs                         Output
------------------------        --------------------
 Result 1       Result 2                Disease
 -----------------------        --------------------
-0.5982         0.9870                     1     
-0.2019         0.6210                     1
 0.1797         0.4518                     0
-0.0982         0.5876                     1
  ...             ...                     ...

Using this data in neural network, this project is able to predict the output (disease result) of a patient that isn't in the data list with a minimum percentage of success of 88%.


Copyright 2014 José Luis Martín

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
See the License for the specific language governing permissions and
limitations under the License.
Popular Network Projects
Popular Neural Projects
Popular Networking Categories

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Neural Network