Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Scientific Visualization Book | 9,131 | 8 days ago | 17 | other | Python | |||||
An open access book on scientific visualization using python and matplotlib | ||||||||||
Mplfinance | 2,638 | 33 | 11 days ago | 34 | May 25, 2022 | 126 | other | Python | ||
Financial Markets Data Visualization using Matplotlib | ||||||||||
Matplotlib_for_papers | 1,849 | 4 months ago | 1 | other | Jupyter Notebook | |||||
Handout for the tutorial "Creating publication-quality figures with matplotlib" | ||||||||||
Prettyplotlib | 1,518 | 47 | 4 | 4 years ago | 8 | March 04, 2014 | 11 | mit | Python | |
Painlessly create beautiful matplotlib plots. | ||||||||||
Itermplot | 1,292 | 5 | 1 | 2 years ago | 20 | July 08, 2021 | 16 | Python | ||
An awesome iTerm2 backend for Matplotlib, so you can plot directly in your terminal. | ||||||||||
Adjusttext | 1,177 | 43 | 63 | 15 days ago | 16 | June 30, 2020 | 52 | mit | Jupyter Notebook | |
A small library for automatically adjustment of text position in matplotlib plots to minimize overlaps. | ||||||||||
Mplcyberpunk | 1,093 | 2 | 6 months ago | 11 | July 07, 2022 | 3 | mit | Python | ||
"Cyberpunk style" for matplotlib plots | ||||||||||
Basemap | 701 | 238 | 26 | 4 months ago | 18 | May 11, 2022 | 117 | mit | Python | |
Plot on map projections (with coastlines and political boundaries) using matplotlib | ||||||||||
Matplotlib Gallery | 673 | 2 years ago | gpl-3.0 | Jupyter Notebook | ||||||
Examples of matplotlib codes and plots | ||||||||||
Python Ternary | 611 | 10 | 11 | 3 months ago | 11 | February 17, 2021 | 33 | mit | Python | |
:small_red_triangle: Ternary plotting library for python with matplotlib |
Linear regression implementation in R (for university course).
X (key) | Y (value) |
---|---|
1 | 2 |
2 | 2 |
3 | 5 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 6 |
We'll first enter the given data in R and create a scatter plot for it. Then we'll craft for our plot the "line of best fit", or the "least squares regression line".
After that, we'll define the "Pearson's correlation coefficient", commonly called "the correlation coefficient".
The correlation coefficient 0.9053 satisfies the condition -1 <= Rxy <= 1, and indicates a quite strong degree of linear dependence between the given variables.
Finally, we'll predict the value for key = 8.
This project is licensed under the MIT License - see the LICENSE.md file for details