Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Awesome Meta Learning | 411 | 4 years ago | 1 | |||||||
A curated list of Meta-Learning resources/papers. | ||||||||||
Epg | 197 | 4 years ago | 4 | mit | Python | |||||
Code for the paper "Evolved Policy Gradients" | ||||||||||
Far Ho | 133 | 3 years ago | 2 | mit | Jupyter Notebook | |||||
Gradient based hyperparameter optimization & meta-learning package for TensorFlow | ||||||||||
Boml | 124 | 2 years ago | 8 | September 19, 2020 | 1 | mit | Python | |||
Bilevel Optimization Library in Python for Multi-Task and Meta Learning | ||||||||||
Memory Efficient Maml | 48 | 3 years ago | mit | Jupyter Notebook | ||||||
Memory efficient MAML using gradient checkpointing | ||||||||||
Sgrnn | 39 | 5 years ago | 2 | Python | ||||||
Tensorflow implementation of Synthetic Gradient for RNN (LSTM) | ||||||||||
Sib_meta_learn | 37 | 3 years ago | Python | |||||||
Code of Empirical Bayes Transductive Meta-Learning with Synthetic Gradients | ||||||||||
Mt Net | 23 | 4 years ago | 4 | mit | Python | |||||
Code accompanying the ICML-2018 paper "Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace" | ||||||||||
Learning To Learn By Pytorch | 18 | 3 years ago | 2 | mit | Python | |||||
A simple re-implementation for "Learning to learn by gradient descent by gradient descent "by PyTorch | ||||||||||
Gbml | 17 | 3 years ago | 3 | mit | Python | |||||
A collection of Gradient-Based Meta-Learning Algorithms with pytorch |
A curated list of Meta-Learning resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers, and awesome-architecture-search.
Please feel free to pull requests or open an issue to add papers.
Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples. Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, Hugo Larochelle.
Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace. Yoonho Lee, Seungjin Choi.
FIGR: Few-shot Image Generation with Reptile. Louis Clouâtre, Marc Demers.
Online gradient-based mixtures for transfer modulation in meta-learning. Ghassen Jerfel, Erin Grant, Thomas L. Griffiths, Katherine Heller.
Auto-Meta: Automated Gradient Based Meta Learner Search. Jaehong Kim, Youngduck Choi, Moonsu Cha, Jung Kwon Lee, Sangyeul Lee, Sungwan Kim, Yongseok Choi, Jiwon Kim.
MetaGAN: An Adversarial Approach to Few-Shot Learning. ZHANG, Ruixiang and Che, Tong and Ghahramani, Zoubin and Bengio, Yoshua and Song, Yangqiu.
Learned Optimizers that Scale and Generalize. Olga Wichrowska, Niru Maheswaranathan, Matthew W. Hoffman, Sergio Gomez Colmenarejo, Misha Denil, Nando de Freitas, Jascha Sohl-Dickstein.
Guiding Policies with Language via Meta-Learning. John D. Co-Reyes, Abhishek Gupta, Suvansh Sanjeev, Nick Altieri, John DeNero, Pieter Abbeel, Sergey Levine.
Deep Comparison: Relation Columns for Few-Shot Learning. Xueting Zhang, Flood Sung, Yuting Qiang, Yongxin Yang, Timothy M. Hospedales.
Towards learning-to-learn. Benjamin James Lansdell, Konrad Paul Kording.
Learning to Learn with Gradients. Finn, Chelsea.
How to train your MAML. Antreas Antoniou, Harrison Edwards, Amos Storkey.
Learned optimizers that outperform SGD on wall-clock and validation loss. Luke Metz, Niru Maheswaranathan, Jeremy Nixon, C. Daniel Freeman, Jascha Sohl-Dickstein
Gradient Agreement as an Optimization Objective for Meta-Learning. Amir Erfan Eshratifar, David Eigen, Massoud Pedram.
Few-Shot Image Recognition by Predicting Parameters from Activations. Siyuan Qiao, Chenxi Liu, Wei Shen, Alan Yuille. CVPR 2018.
META-LEARNING WITH LATENT EMBEDDING OPTIMIZATION. Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero & Raia Hadsell
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, Chelsea Finn, Pieter Abbeel, Sergey Levine. ICML 2017.
On First-Order Meta-Learning Algorithms. Alex Nichol, Joshua Achiam, John Schulman.
Prototypical Networks for Few-shot Learning, Jake Snell, Kevin Swersky, Richard S. Zemel. NIPS 2017.
Learning to learn by gradient descent by gradient descent, Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul, Brendan Shillingford, Nando de Freitas
Learning to Learn without Gradient Descent by Gradient Descent, Yutian Chen, Matthew W. Hoffman, Sergio Gomez Colmenarejo, Misha Denil, Timothy P. Lillicrap, Matt Botvinick, Nando de Freitas, ICML 2017
OPTIMIZATION AS A MODEL FOR FEW-SHOT LEARNING, Sachin Ravi, Hugo Larochelle. ICLR 2017
Meta-SGD: Learning to Learn Quickly for Few-Shot Learning, Zhenguo Li, Fengwei Zhou, Fei Chen, Hang Li
Unsupervised Meta-Learning for Reinforcement Learning. Abhishek Gupta, Benjamin Eysenbach, Chelsea Finn, Sergey Levine.
Learning to Compare: Relation Network for Few-Shot Learning, Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H.S. Torr, Timothy M. Hospedales, CVPR 2018
Few-shot Pytorch
Zero-shot Pytorch
miniImageNet Pytorch
Object-Level Representation Learning for Few-Shot Image Classification, Liangqu Long, Wei Wang, Jun Wen, Meihui Zhang, Qian Lin, Beng Chin Ooi
A Simple Neural Attentive Meta-Learner, Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, Pieter Abbeel. ICLR 2018
Meta-Learning for Semi-Supervised Few-Shot Classification, Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo Larochelle, Richard S. Zemel. ICLR 2018
Learning to Optimize, Ke Li, Jitendra Malik
Matching Networks for One Shot Learning, Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, Daan Wierstra
Meta-Learning with Memory-Augmented Neural Networks, Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, Timothy Lillicrap
CAML: Fast Context Adaptation via Meta-Learning, Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, Shimon Whiteson
Unsupervised Learning via Meta-Learning, Kyle Hsu, Sergey Levine, Chelsea Finn
Fast Parameter Adaptation for Few-shot Image Captioning and Visual Question Answering. Xuanyi Dong, Linchao Zhu, De Zhang, Yi Yang, Fei Wu.
Deep learning to learn. Pieter Abbeel
Meta-Learning Frontiers: Universal, Uncertain, and Unsupervised, Sergey Levine, Chelsea Finn