Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Tensorflow | 175,280 | 327 | 77 | 17 hours ago | 46 | October 23, 2019 | 2,141 | apache-2.0 | C++ | |
An Open Source Machine Learning Framework for Everyone | ||||||||||
Pytorch | 67,538 | 146 | 17 hours ago | 23 | August 10, 2022 | 12,187 | other | Python | ||
Tensors and Dynamic neural networks in Python with strong GPU acceleration | ||||||||||
Keras | 58,521 | 330 | 19 hours ago | 68 | May 13, 2022 | 390 | apache-2.0 | Python | ||
Deep Learning for humans | ||||||||||
Faceswap | 44,904 | 21 days ago | 24 | gpl-3.0 | Python | |||||
Deepfakes Software For All | ||||||||||
Deepfacelab | 39,560 | 14 days ago | 531 | gpl-3.0 | Python | |||||
DeepFaceLab is the leading software for creating deepfakes. | ||||||||||
Spacy | 26,281 | 1,533 | 842 | 17 hours ago | 196 | April 05, 2022 | 111 | mit | Python | |
💫 Industrial-strength Natural Language Processing (NLP) in Python | ||||||||||
Data Science Ipython Notebooks | 25,025 | a month ago | 33 | other | Python | |||||
Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines. | ||||||||||
Handson Ml | 25,003 | 2 months ago | 136 | apache-2.0 | Jupyter Notebook | |||||
⛔️ DEPRECATED – See https://github.com/ageron/handson-ml3 instead. | ||||||||||
Ai Expert Roadmap | 24,033 | 3 months ago | 13 | mit | JavaScript | |||||
Roadmap to becoming an Artificial Intelligence Expert in 2022 | ||||||||||
Netron | 23,094 | 4 | 63 | 2 days ago | 489 | July 04, 2022 | 28 | mit | JavaScript | |
Visualizer for neural network, deep learning, and machine learning models |
Machine Learning library for python
This library implemented only with python and numpy
$ sudo pip install --upgrade pytrain
import numpy as np
from pytrain.NeuralNetwork import FNN
# Simple dataset
train_mat = [[0.12,0.25],[3.24,4.33],[0.14,0.45],[7.30,4.23]]
train_label = [[0,1],[1,0],[0,1],[1,0]]
test_a = [0.10,0.33]
test_b = [4.0,4.5]
# Train model (FNN)
hidden_layer = [3,2]
fnn = FNN(train_mat, train_label, hidden_layer)
fnn.fit(lr = 0.01, epoch = 2000, err_th = 0.001, batch_size = 4)
# Test model (FNN)
res_a = np.rint(fnn.predict(test_a))
res_b = np.rint(fnn.predict(test_b))
print("X %s => Y %s" % (test_a, res_a))
print("X %s => Y %s" % (test_b, res_b))
———————— output ————————
X [0.1, 0.33] => Y [ 0. 1.]
X [4.0, 4.5] => Y [ 1. 0.]
Fork this repository, and write your algorithm, pull request.
Don't forgot proper test code in test_pytrain.
Test code should be work successfully in below command.
$ python test.py