Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Fashion Mnist | 9,856 | a year ago | 24 | mit | Python | |||||
A MNIST-like fashion product database. Benchmark :point_down: | ||||||||||
Awesome Semantic Segmentation | 8,065 | 2 years ago | 13 | |||||||
:metal: awesome-semantic-segmentation | ||||||||||
Nlp_chinese_corpus | 7,386 | 4 months ago | 19 | mit | ||||||
大规模中文自然语言处理语料 Large Scale Chinese Corpus for NLP | ||||||||||
Clue | 2,954 | 4 months ago | 71 | Python | ||||||
中文语言理解测评基准 Chinese Language Understanding Evaluation Benchmark: datasets, baselines, pre-trained models, corpus and leaderboard | ||||||||||
Benchmarking Gnns | 1,913 | 7 months ago | 2 | mit | Jupyter Notebook | |||||
Repository for benchmarking graph neural networks | ||||||||||
Codesearchnet | 1,548 | a year ago | 7 | mit | Jupyter Notebook | |||||
Datasets, tools, and benchmarks for representation learning of code. | ||||||||||
Deepmoji | 1,331 | a year ago | 9 | mit | Python | |||||
State-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc. | ||||||||||
Codexglue | 944 | 17 days ago | 14 | mit | C# | |||||
CodeXGLUE | ||||||||||
Beir | 808 | 3 | 6 days ago | 28 | June 30, 2022 | 53 | apache-2.0 | Python | ||
A Heterogeneous Benchmark for Information Retrieval. Easy to use, evaluate your models across 15+ diverse IR datasets. | ||||||||||
Tdc | 769 | 1 | 7 days ago | 26 | February 20, 2022 | 25 | mit | Jupyter Notebook | ||
Therapeutics Data Commons: Artificial Intelligence Foundation for Therapeutic Science |
This dataset is part of the Computer Vision problematic consisting in making machines learn to detect the presence of an object in an image. Here, we want to learn a classification model that takes as input an image and return the category of the object it contains.
The Office Caltech dataset contains four different domains: amazon, caltech10, dslr and webcam. These domains contain respectively 958, 1123, 295 and 157 images. Each image contains only one object among a list of 10 objects: backpack, bike, calculator, headphones, keyboard, laptop, monitor, mouse, mug and projector.
With this benchmark dataset in Domain Adaptation, we repeatedly take one of the four domains as Source domain S and one of the three remaining as target T. The aim is then to learn to classify images with the data from S to correctly classify the images in T.
In addition to the images, we also give features that were extracted from the images to describe them. We give different sets of features that describe all the images in the corresponding folder.
We propose some code in python3 to show how to evaluate the benchmark. What is usually evaluated with this benchmark are Domain Adaptation algorithms. We provide code for a few of them.
Python3 and some python3 libraries:
Program launched by executing the main.py script with python:
python3 main.py
For each adaptation problem among the 12 possible, each adaptation algorithm chosen at the beginning of the file is applied. Then are reported the mean accuracy and standard deviation. Results (using the default surf [1] features):
Feature used: surf
Number of iterations: 10
Adaptation algorithms used: NA SA
A->C .......... 4.75s
22.2 2.0 NA
33.8 1.8 SA
A->D .......... 2.82s
23.4 2.6 NA
32.5 4.1 SA
A->W .......... 2.67s
24.5 1.9 NA
31.6 2.2 SA
C->A .......... 4.50s
20.6 2.9 NA
36.4 2.3 SA
C->D .......... 2.27s
20.7 2.8 NA
37.4 3.8 SA
C->W .......... 2.66s
20.1 4.8 NA
29.6 3.6 SA
D->A .......... 2.99s
27.5 1.7 NA
32.0 1.5 SA
D->C .......... 3.07s
25.1 1.7 NA
30.5 1.3 SA
D->W .......... 1.50s
53.4 3.5 NA
78.4 2.1 SA
W->A .......... 4.03s
23.4 1.2 NA
31.5 1.5 SA
W->C .......... 4.23s
18.8 0.7 NA
28.9 1.1 SA
W->D .......... 1.65s
52.4 2.4 NA
82.9 2.1 SA
Mean results:
27.7 2.3 NA
40.5 2.3 SA
By modifying the feature used in the script with CaffeNet [2] features:
Feature used: CaffeNet4096
Number of iterations: 10
Adaptation algorithms used: NA SA
A->C .......... 22.60s
72.4 2.4 NA
78.7 1.2 SA
A->D .......... 8.03s
76.4 3.5 NA
83.1 1.7 SA
A->W .......... 9.44s
67.3 3.1 NA
79.7 2.3 SA
C->A .......... 20.47s
81.2 1.9 NA
86.6 1.3 SA
C->D .......... 8.15s
76.4 5.0 NA
79.7 2.4 SA
C->W .......... 9.62s
69.7 5.3 NA
77.8 3.8 SA
D->A .......... 14.98s
69.7 2.5 NA
83.0 0.8 SA
D->C .......... 16.04s
66.9 2.5 NA
75.4 1.2 SA
D->W .......... 7.87s
91.5 1.9 NA
97.2 1.5 SA
W->A .......... 19.23s
67.5 2.4 NA
81.8 1.3 SA
W->C .......... 22.99s
60.7 1.1 NA
73.3 0.7 SA
W->D .......... 8.27s
96.8 1.5 NA
99.6 0.4 SA
Mean results:
74.7 2.7 NA
83.0 1.5 SA
and with GoogleNet [3] features:
Feature used: GoogleNet1024
Number of iterations: 10
Adaptation algorithms used: NA SA
A->C .......... 5.51s
84.7 1.3 NA
85.8 1.0 SA
A->D .......... 1.91s
88.4 1.6 NA
87.4 2.6 SA
A->W .......... 2.46s
82.2 3.3 NA
84.3 3.3 SA
C->A .......... 5.19s
90.8 0.8 NA
91.6 1.1 SA
C->D .......... 2.39s
87.1 2.5 NA
87.6 2.0 SA
C->W .......... 3.03s
86.3 2.0 NA
88.7 2.3 SA
D->A .......... 4.10s
83.3 2.5 NA
88.4 1.5 SA
D->C .......... 5.75s
77.1 2.5 NA
84.0 1.7 SA
D->W .......... 1.89s
97.9 0.9 NA
98.2 1.0 SA
W->A .......... 5.25s
86.4 1.0 NA
89.8 1.2 SA
W->C .......... 5.57s
78.9 1.0 NA
83.6 0.8 SA
W->D .......... 1.93s
99.1 0.4 NA
99.3 0.4 SA
Mean results:
86.8 1.7 NA
89.1 1.6 SA
[1] Gong, B., Grauman, K., & Sha, F. (2014). Learning kernels for unsupervised domain adaptation with applications to visual object recognition. International Journal of Computer Vision, 109(1-2), 3-27.
[2] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., ... & Darrell, T. (2014, November). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia (pp. 675-678). ACM.
[3] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).