Officecaltechdomainadaptation

Code, Images and Features for the Domain Adaptation benchmark dataset Office-Caltech
Alternatives To Officecaltechdomainadaptation
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Fashion Mnist9,856
a year ago24mitPython
A MNIST-like fashion product database. Benchmark :point_down:
Awesome Semantic Segmentation8,065
2 years ago13
:metal: awesome-semantic-segmentation
Nlp_chinese_corpus7,386
4 months ago19mit
大规模中文自然语言处理语料 Large Scale Chinese Corpus for NLP
Clue2,954
4 months ago71Python
中文语言理解测评基准 Chinese Language Understanding Evaluation Benchmark: datasets, baselines, pre-trained models, corpus and leaderboard
Benchmarking Gnns1,913
7 months ago2mitJupyter Notebook
Repository for benchmarking graph neural networks
Codesearchnet1,548
a year ago7mitJupyter Notebook
Datasets, tools, and benchmarks for representation learning of code.
Deepmoji1,331
a year ago9mitPython
State-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc.
Codexglue944
17 days ago14mitC#
CodeXGLUE
Beir80836 days ago28June 30, 202253apache-2.0Python
A Heterogeneous Benchmark for Information Retrieval. Easy to use, evaluate your models across 15+ diverse IR datasets.
Tdc76917 days ago26February 20, 202225mitJupyter Notebook
Therapeutics Data Commons: Artificial Intelligence Foundation for Therapeutic Science
Alternatives To Officecaltechdomainadaptation
Select To Compare


Alternative Project Comparisons
Readme

OfficeCaltechDomainAdaptation

What is this ?

This dataset is part of the Computer Vision problematic consisting in making machines learn to detect the presence of an object in an image. Here, we want to learn a classification model that takes as input an image and return the category of the object it contains.

The Office Caltech dataset contains four different domains: amazon, caltech10, dslr and webcam. These domains contain respectively 958, 1123, 295 and 157 images. Each image contains only one object among a list of 10 objects: backpack, bike, calculator, headphones, keyboard, laptop, monitor, mouse, mug and projector.

With this benchmark dataset in Domain Adaptation, we repeatedly take one of the four domains as Source domain S and one of the three remaining as target T. The aim is then to learn to classify images with the data from S to correctly classify the images in T.

What is available in this repository ?

In addition to the images, we also give features that were extracted from the images to describe them. We give different sets of features that describe all the images in the corresponding folder.

We propose some code in python3 to show how to evaluate the benchmark. What is usually evaluated with this benchmark are Domain Adaptation algorithms. We provide code for a few of them.

Dependencies

Python3 and some python3 libraries:

  • numpy
  • scipy
  • sklearn

Example of execution

Program launched by executing the main.py script with python:

python3 main.py

For each adaptation problem among the 12 possible, each adaptation algorithm chosen at the beginning of the file is applied. Then are reported the mean accuracy and standard deviation. Results (using the default surf [1] features):

Feature used:  surf
Number of iterations:  10
Adaptation algorithms used:   NA  SA
A->C ..........   4.75s
     22.2  2.0 NA
     33.8  1.8 SA
A->D ..........   2.82s
     23.4  2.6 NA
     32.5  4.1 SA
A->W ..........   2.67s
     24.5  1.9 NA
     31.6  2.2 SA
C->A ..........   4.50s
     20.6  2.9 NA
     36.4  2.3 SA
C->D ..........   2.27s
     20.7  2.8 NA
     37.4  3.8 SA
C->W ..........   2.66s
     20.1  4.8 NA
     29.6  3.6 SA
D->A ..........   2.99s
     27.5  1.7 NA
     32.0  1.5 SA
D->C ..........   3.07s
     25.1  1.7 NA
     30.5  1.3 SA
D->W ..........   1.50s
     53.4  3.5 NA
     78.4  2.1 SA
W->A ..........   4.03s
     23.4  1.2 NA
     31.5  1.5 SA
W->C ..........   4.23s
     18.8  0.7 NA
     28.9  1.1 SA
W->D ..........   1.65s
     52.4  2.4 NA
     82.9  2.1 SA

Mean results:
     27.7  2.3 NA
     40.5  2.3 SA

By modifying the feature used in the script with CaffeNet [2] features:

Feature used:  CaffeNet4096
Number of iterations:  10
Adaptation algorithms used:   NA  SA
A->C ..........  22.60s
     72.4  2.4 NA
     78.7  1.2 SA
A->D ..........   8.03s
     76.4  3.5 NA
     83.1  1.7 SA
A->W ..........   9.44s
     67.3  3.1 NA
     79.7  2.3 SA
C->A ..........  20.47s
     81.2  1.9 NA
     86.6  1.3 SA
C->D ..........   8.15s
     76.4  5.0 NA
     79.7  2.4 SA
C->W ..........   9.62s
     69.7  5.3 NA
     77.8  3.8 SA
D->A ..........  14.98s
     69.7  2.5 NA
     83.0  0.8 SA
D->C ..........  16.04s
     66.9  2.5 NA
     75.4  1.2 SA
D->W ..........   7.87s
     91.5  1.9 NA
     97.2  1.5 SA
W->A ..........  19.23s
     67.5  2.4 NA
     81.8  1.3 SA
W->C ..........  22.99s
     60.7  1.1 NA
     73.3  0.7 SA
W->D ..........   8.27s
     96.8  1.5 NA
     99.6  0.4 SA

Mean results:
     74.7  2.7 NA
     83.0  1.5 SA

and with GoogleNet [3] features:

Feature used:  GoogleNet1024
Number of iterations:  10
Adaptation algorithms used:   NA  SA
A->C ..........   5.51s
     84.7  1.3 NA
     85.8  1.0 SA
A->D ..........   1.91s
     88.4  1.6 NA
     87.4  2.6 SA
A->W ..........   2.46s
     82.2  3.3 NA
     84.3  3.3 SA
C->A ..........   5.19s
     90.8  0.8 NA
     91.6  1.1 SA
C->D ..........   2.39s
     87.1  2.5 NA
     87.6  2.0 SA
C->W ..........   3.03s
     86.3  2.0 NA
     88.7  2.3 SA
D->A ..........   4.10s
     83.3  2.5 NA
     88.4  1.5 SA
D->C ..........   5.75s
     77.1  2.5 NA
     84.0  1.7 SA
D->W ..........   1.89s
     97.9  0.9 NA
     98.2  1.0 SA
W->A ..........   5.25s
     86.4  1.0 NA
     89.8  1.2 SA
W->C ..........   5.57s
     78.9  1.0 NA
     83.6  0.8 SA
W->D ..........   1.93s
     99.1  0.4 NA
     99.3  0.4 SA

Mean results:
     86.8  1.7 NA
     89.1  1.6 SA

[1] Gong, B., Grauman, K., & Sha, F. (2014). Learning kernels for unsupervised domain adaptation with applications to visual object recognition. International Journal of Computer Vision, 109(1-2), 3-27.

[2] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., ... & Darrell, T. (2014, November). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia (pp. 675-678). ACM.

[3] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).

Popular Dataset Projects
Popular Benchmark Projects
Popular Data Processing Categories

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Python
Dataset
Benchmark
Computer Vision
Domain Adaptation