Bayesian inference with probabilistic programming.
Alternatives To Turing.jl
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
a day ago70mitJulia
Bayesian inference with probabilistic programming.
Monad Bayes370
3 days ago39mitJupyter Notebook
A library for probabilistic programming in Haskell.
4 years ago7May 30, 201953apache-2.0Python
Modular Probabilistic Programming on MXNet
2 years ago19mitJulia
SossMLJ makes it easy to build MLJ machines from user-defined models from the Soss probabilistic programming language
5 years ago6apache-2.0Scala
Embedded Scala probabilistic programming language
12 years agoPython
Trainable Python programming language detection module based on a naive Bayes classifier and Bayesian inference
Alternatives To Turing.jl
Select To Compare

Alternative Project Comparisons


Build Status Coverage Status codecov Documentation ColPrac: Contributor's Guide on Collaborative Practices for Community Packages

Turing.jl is a Julia library for general-purpose probabilistic programming. Turing allows the user to write models using standard Julia syntax, and provides a wide range of sampling-based inference methods for solving problems across probabilistic machine learning, Bayesian statistics, and data science. Compared to other probabilistic programming languages, Turing has a special focus on modularity, and decouples the modelling language (i.e. the compiler) and inference methods. This modular design, together with the use of a high-level numerical language Julia, makes Turing particularly extensible: new model families and inference methods can be easily added.

Current features include:

Getting Started

Turing's home page, with links to everything you'll need to use Turing is:


What's changed recently?

See releases.

Want to contribute?

Turing was originally created and is now managed by Hong Ge. Current and past Turing team members include Hong Ge, Kai Xu, Martin Trapp, Mohamed Tarek, Cameron Pfiffer, Tor Fjelde. You can see the full list of on Github: https://github.com/TuringLang/Turing.jl/graphs/contributors.

Turing is an open source project so if you feel you have some relevant skills and are interested in contributing then please do get in touch. See the Contributing page for details on the process. You can contribute by opening issues on Github or implementing things yourself and making a pull request. We would also appreciate example models written using Turing.

Issues and Discussions

Issues related to bugs and feature requests are welcome on the issues page, while discussions and questions about statistical applications and theory should can place on the Discussions page or our channel (#turing) in the Julia Slack chat. If you do not already have an invitation to Julia's Slack, you can get one by going here.

Related projects

  • The Stan language for probabilistic programming - Stan.jl
  • Bare-bones implementation of robust dynamic Hamiltonian Monte Carlo methods - DynamicHMC.jl
  • Comparing performance and results of mcmc options using Julia - MCMCBenchmarks.jl

Citing Turing.jl

If you use Turing for your own research, please consider citing the following publication: Hong Ge, Kai Xu, and Zoubin Ghahramani: Turing: a language for flexible probabilistic inference. AISTATS 2018 pdf bibtex

Popular Programming Projects
Popular Bayesian Inference Projects
Popular Learning Resources Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Machine Learning
Artificial Intelligence
Bayesian Inference
Bayesian Statistics
Probabilistic Programming