Awesome Open Source
Awesome Open Source

Lightweight Model for Real-Time Semantic Segmentation

python-image pytorch-image lic-image

This project aims at providing the popular lightweight model implementations for real-time semantic segmentation.

Usage


Train

  • Single GPU training
python train.py --model mobilenet --dataset citys --lr 0.01 --epochs 240
  • Multi-GPU training
# for example, train mobilenet with 4 GPUs:
export NGPUS=4
python -m torch.distributed.launch --nproc_per_node=$NGPUS train.py --model mobilenet --dataset citys --lr 0.01 --epochs 240

Evaluation

  • Single GPU evaluating
python eval.py --model mobilenet_small --dataset citys
  • Multi-GPU evaluating
# for example, evaluate mobilenet with 4 GPUs:
export NGPUS=4
python -m torch.distributed.launch --nproc_per_node=$NGPUS eval.py --model mobilenet --dataset citys

Result

  • Cityscapes

Where: crop_size=768, lr=0.01, epochs=80.

Backbone OHEM Params(M) FLOPs(G) CPU(fps) GPU(fps) mIoU/pixACC Model
mobilenet 5.31 4.48 0.81 77.11 0.463/0.901 GoogleDrive,BaiduCloud(ybsg)
mobilenet 5.31 4.48 0.81 75.35 0.526/0.909 GoogleDrive,BaiduCloud(u2y2)
mobilenetv2 4.88 4.04 0.49 49.40 0.613/0.930 GoogleDrive,BaiduCloud(q2g5)
mobilenetv3_small 1.02 1.64 2.59 104.56 0.529/0.908 GoogleDrive,BaiduCloud(e7no)
mobilenetv3_large 2.68 4.59 1.39 79.43 0.584/0.916 GoogleDrive,BaiduCloud(i60c)
shufflenet 6.89 5.68 0.57 43.79 0.493/0.901 GoogleDrive,BaiduCloud(6fjh)
shufflenetv2 5.24 4.33 0.72 57.71 0.528/0.914 GoogleDrive,BaiduCloud(7pi5)
igcv3 4.86 4.04 0.34 29.70 0.573/0.923 GoogleDrive,BaiduCloud(qe4f)
efficientnet-b0 6.63 2.60 0.33 30.15 0.492/0.903 GoogleDrive,BaiduCloud(phuy)
  • Improve
Model batch_size epochs crop_size init_weight optimizer mIoU/pixACC
mobilenetv3_small 4 80 768 kaiming_uniform SGD 0.529/0.908
mobilenetv3_small 4 160 768 kaiming_uniform SGD 0.587/0.918
mobilenetv3_small 8 160 768 kaiming_uniform SGD 0.553/0/913
mobilenetv3_small 4 80 1024 kaiming_uniform SGD 0.557/0.914
mobilenetv3_small 4 80 768 xavier_uniform SGD 0.550/0.911
mobilenetv3_small 4 80 768 kaiming_uniform Adam 0.549/0.911
mobilenetv3_small 8 160 1024 xavier_uniform SGD 0.612/0.920

Support

To Do

  • [ ] improve performance
  • [ ] optimize memory
  • [ ] check efficientnet
  • [ ] replace nn.SyncBatchNorm by nn.BatchNorm.convert_sync_batchnorm
  • [ ] check find_unused_parameters in nn.parallel.DistributedDataParallel

References


Get A Weekly Email With Trending Projects For These Topics
No Spam. Unsubscribe easily at any time.
python (54,447
real-time (273
semantic-segmentation (245
lightweight (197
network-analysis (98