Awesome Open Source
Awesome Open Source


Join the chat at #sciml-bridged Global Docs

codecov Build Status Build status

ColPrac: Contributor's Guide on Collaborative Practices for Community Packages SciML Code Style

OrdinaryDiffEq.jl is a component package in the DifferentialEquations ecosystem. It holds the ordinary differential equation solvers and utilities. While completely independent and usable on its own, users interested in using this functionality should check out DifferentialEquations.jl.


Assuming that you already have Julia correctly installed, it suffices to import OrdinaryDiffEq.jl in the standard way:

import Pkg; Pkg.add("OrdinaryDiffEq")


OrdinaryDiffEq.jl is part of the SciML common interface, but can be used independently of DifferentialEquations.jl. The only requirement is that the user passes an OrdinaryDiffEq.jl algorithm to solve. For example, we can solve the ODE tutorial from the docs using the Tsit5() algorithm:

using OrdinaryDiffEq
f(u,p,t) = 1.01*u
tspan = (0.0,1.0)
prob = ODEProblem(f,u0,tspan)
sol = solve(prob,Tsit5(),reltol=1e-8,abstol=1e-8)
using Plots
plot(sol,linewidth=5,title="Solution to the linear ODE with a thick line",
     xaxis="Time (t)",yaxis="u(t) (in μm)",label="My Thick Line!") # legend=false
plot!(sol.t, t->0.5*exp(1.01t),lw=3,ls=:dash,label="True Solution!")

That example uses the out-of-place syntax f(u,p,t), while the inplace syntax (more efficient for systems of equations) is shown in the Lorenz example:

using OrdinaryDiffEq
function lorenz!(du,u,p,t)
 du[1] = 10.0(u[2]-u[1])
 du[2] = u[1]*(28.0-u[3]) - u[2]
 du[3] = u[1]*u[2] - (8/3)*u[3]
u0 = [1.0;0.0;0.0]
tspan = (0.0,100.0)
prob = ODEProblem(lorenz!,u0,tspan)
sol = solve(prob,Tsit5())
using Plots; plot(sol,idxs=(1,2,3))

Very fast static array versions can be specifically compiled to the size of your model. For example:

using OrdinaryDiffEq, StaticArrays
function lorenz(u,p,t)
 SA[10.0(u[2]-u[1]),u[1]*(28.0-u[3]) - u[2],u[1]*u[2] - (8/3)*u[3]]
u0 = SA[1.0;0.0;0.0]
tspan = (0.0,100.0)
prob = ODEProblem(lorenz,u0,tspan)
sol = solve(prob,Tsit5())

For "refined ODEs", like dynamical equations and SecondOrderODEProblems, refer to the DiffEqDocs. For example, in DiffEqTutorials.jl we show how to solve equations of motion using symplectic methods:

function HH_acceleration!(dv,v,u,p,t)
    x,y  = u
    dx,dy = dv
    dv[1] = -x - 2x*y
    dv[2] = y^2 - y -x^2
initial_positions = [0.0,0.1]
initial_velocities = [0.5,0.0]
prob = SecondOrderODEProblem(HH_acceleration!,initial_velocities,initial_positions,tspan)
sol2 = solve(prob, KahanLi8(), dt=1/10);

Other refined forms are IMEX and semi-linear ODEs (for exponential integrators).

Available Solvers

For the list of available solvers, please refer to the DifferentialEquations.jl ODE Solvers, Dynamical ODE Solvers, and the Split ODE Solvers pages.

Alternative Project Comparisons
Related Awesome Lists
Top Programming Languages

Get A Weekly Email With Trending Projects For These Topics
No Spam. Unsubscribe easily at any time.
Neural (16,506
Julia (14,021
Differential Equations (324
Ode (181
Adaptive (149
Scientific Machine Learning (141
Sciml (114
Ordinary Differential Equations (80
Event Handling (29